
Towards Abstraction for DynAlloy Specifications

Nazareno M. Aguirre1, Marcelo F. Frias2, Pablo Ponzio1, Brian J. Cardiff2,
Juan P. Galeotti2, and Germán Regis1

1 Department of Computer Science, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
and CONICET, Argentina. E–mail: {naguirre, pponzio, gregis}@dc.exa.unrc.edu.ar

2 Department of Computer Science, FCEyN, Universidad de Buenos Aires and
CONICET, Argentina. E–mail: {mfrias, bcardiff, jgaleotti}@dc.uba.ar

Abstract. DynAlloy is an extension of the Alloy language to better de-
scribe state change via actions and programs, in the style of dynamic
logic. In this paper, we report on our experience in trying to provide ab-
straction based mechanisms for improving DynAlloy specifications with
respect to SAT based analysis. The technique we employ is based on
predicate abstraction, but due to the context in which we make use of it,
is subject to the following more specific improvements: (i) since DynAl-
loy’s analysis consists of checking partial correctness assertions against
programs, we are only interested in the initial and final states of a com-
putation, and therefore we can safely abstract away some intermediate
states in the computation (generally, this kind of abstraction cannot be
safely applied in model checking), (ii) since DynAlloy’s analysis is in-
herently bounded, we can safely rely on the sole use of a SAT solver for
producing the abstractions, and (iii) since DynAlloy’s basic operational
unit is the atomic action, which can be used in different parts within
a program, we can reuse the abstraction of an action in different parts
of a program, which can accelerate the convergence in checking valid
properties.
We present the technique via a case study based on a translation of
a JML annotated Java program into DynAlloy, accompanied by some
preliminary experimental results showing some of the benefits of the
technique.

1 Introduction

The increasing dependability of human activities on software systems is lead-
ing us to accept that formal methods, once thought to be worthwhile only for
critical systems, are actually applicable and even necessary for a wider class of
systems. Indeed, there currently exist many tools and projects attempting to
bring together formal methods and widely used (less formal) software develop-
ment notations and methodologies (e.g., the works reported in [17, 18, 20], to
name a few). Two of the main limitations for using formal methods in practice
are that they require mathematically trained developers, and that their applica-
tion often involves the manual manipulations of mathematical expressions, both
during modelling (specification) and analysis (e.g., by theorem proving). Alloy

[15] is a formal method that attempts to partly overcome these limitations. First,
it is based on a simple notation, with a simple relational semantics, which re-
sembles the modelling constructs of less formal object oriented notations, and
therefore is easier to learn and use for developers without a strong mathemat-
ical background. Second, it offers a completely automated SAT based analysis
mechanism, so that, in principle, no manual manipulations of mathematical ex-
pressions are necessary for analysing specifications. This is done at the expense of
losing certainty, since the Alloy tool cannot guarantee the validity of a property,
but only its validity in bounded (usually by a rather small bound) models [15].
Basically, given a system specification and a statement about it, the Alloy tool
exhaustively searches for a counterexample of this statement (under the assump-
tions of the system description), by reducing the problem to the satisfiability of
a propositional formula. Since the Alloy language is first-order, the exhaustive
search for counterexamples has to be performed up to certain bound k in the
number of elements in the universe of the interpretations. Thus, this analysis
procedure can be regarded as a validation mechanism, rather than a verification
procedure, since it cannot be used in general to guarantee the absence of coun-
terexamples for a theory. Nevertheless, this analysis mechanism is very useful in
practice, since it allows one to discover counterexamples of intended properties,
and if none is found, gain confidence about our specifications. This is similar
in spirit to testing, since one checks the truth of a statement for a number of
cases; however, as explained in [16], the scope of the technique is much greater
than that of testing, since the space of cases examined (usually in the order of
billions) is beyond what is covered by testing techniques, and it does not require
one to manually provide test cases.

Alloy belongs to the class of the so called model oriented formal methods.
Specifications in Alloy are described as abstract models of software systems.
These models are essentially composed of data domains and relations between
these domains, much in the style of schemata for data domains and operations in
Z [21]. As we and other researchers have advocated in the past, this is suitable
for building static models of software, but it is less appropriate for the dynamics
of systems, i.e., for describing executions and their intended properties [9]. This
problem has inspired the definition of an extension of Alloy, called DynAlloy
[10], that incorporates actions, understood as a general concept associated with
state change, and covering composite as well as atomic actions. Actions can be
composed as program terms in dynamic logic, i.e., via sequential composition,
non deterministic choice, iteration, etc. Moreover, one can provide partial cor-
rectness assertions about actions, which the DynAlloy Analyzer then translates
into Alloy for their SAT based analysis.

Abstraction is strongly related to simplicity and understandability of mod-
els, as well as to their analysability. Usually, models are driven by the first two
concerns, i.e., the modeller chooses the level of abstraction in his models trying
to faithfully characterise the aspects of software he is interested in, in the most
simple way possible. Typically, these models are suitable according to their un-
derstandability, but not the most appropriate with respect to analysis. Indeed,

it is generally accepted that abstraction on models is crucial for the successful
automated analysis of specifications [3]. In this paper, we are concerned about
improving the abstraction of DynAlloy specifications for analysis. We present a
technique, which has been implemented in a prototypical tool, that allows us
to employ a version of predicate abstraction [12], an abstraction technique suc-
cessfully used for model checking, on DynAlloy specifications. Because of the
context in which we use predicate abstraction, we are able to take advantage of
the following improvements:

– Since DynAlloy’s analysis is based on checking partial correctness assertions
against programs, we are only interested in the initial and final states of
a computation, and therefore we can safely abstract away some intermedi-
ate states. We take advantage of this situation via a particular automated
use of program atomisation [11]. Notice that this kind of improvement can-
not be straightforwardly applied in model checking, since the abstraction of
intermediate states can lead to missing violations of safety properties.

– Since DynAlloy’s analysis is inherently bounded, we can safely rely on the
sole use of a SAT solver for producing the abstractions, as well as refining
these in a counterexample guided way.

– Since DynAlloy’s basic operational unit is the atomic action, which can be
used in different parts within a program, we can reuse the abstraction of an
action in different parts of a program, which can contribute to accelerating
convergence in checking valid properties.

Our presentation will be driven by a model resulting from a translation of
Java code. As it will be made clearer later on, this kind of model will enable us
to perform some of the transformations required for constructing and refining
an abstraction in a more efficient way. It will also enable us to present some
preliminary experimental results.

2 A Brief Introduction to Alloy and DynAlloy

In this section we present a brief introduction to Alloy and DynAlloy by means
of an example. A thorough description of Alloy can be found in [16].

Our case-study involves a program over sets (of characters) represented as
acyclic linked lists, without repeated elements. For representing these, we would
need a model of lists. In order to specify lists, a data type for the data stored in
the lists is necessary. We can then start by indicating the existence of a set (of
atoms) for data, which in Alloy is specified using a signature:

sig Data { }

This is a basic signature. We do not assume any special properties regarding the
structure of data. We can now specify what constitutes a list. A list consists of
a head (which is a node or may be a null reference), and nodes in turn consist
of a data value and an attribute next relating the current node to the next one
in a linked list:

sig List { sig Node {
head : Node+NullValue val : Data,

} next : Node+NullValue
}

According to the semantics of Alloy, fields val and next are functional rela-
tions from Node objects to Data objects, and from Node objects to Node objects
(or to a constant NullValue), respectively. NullValue is a signature representing
a constant, namely the null reference, defined in the following way:

one sig NullValue { }

As the previous definitions show, signatures are used to define data domains
and their structure. The attributes of a signature denote relations. The dot
operator ‘·’ corresponds to relational composition, generalised to n-ary relations,
and having relational image as a special case. So, for example, given a set L (not
necessarily a singleton) of Node atoms, expression L.next denotes the relational
image of L under the relation denoted by next. This leads to a relational view
of the dot notation that preserves the intuitive navigational reading of dot, as
in object orientation.

Using signatures and fields, it is possible to build more complex expressions
denoting relations, with the aid of the Alloy operators. Operator ∼ denotes re-
lational transposition, ∗ denotes reflexive-transitive closure, and ^ denotes tran-
sitive closure of a binary relation. There are also binary operators. Operator
+ denotes union, & denotes intersection, and dot (.) denotes, as we mentioned
before, composition of relations. In all cases, the typing must be adequate. We
build formulae from expressions. Binary predicate in checks for inclusion, while
= checks for equality. From these (atomic) formulae we define more complex
formulae using standard first-order connectives and quantifiers. Negation is de-
noted by !. Conjunction, disjunction and implication are denoted by &&, || and
=>, respectively. Finally, quantifications have the form some a : A | α(a) and
all a : A | α(a). Formulae can be used as axioms that constrain models, called
facts. For example, the following fact:

fact AcyclicLists {
all l:List, n:Node | n in l.head.(*next) => n !in n.(^next)

}

constrains lists to be acyclic. Formulae can also be used in assertions, which are
properties to be analysed using the Alloy Analyzer. For instance, the following
assertion:

assert NextInjective {
all l: List, n1, n2: Node |

n1+n2 in l.head.*next && n1 != n2 => n1.next != n2.next
}

asserts that, for every pair of nodes in a list, if the nodes are different, then their
corresponding ‘next’ nodes are also different. One can also write parameterised
formulae, called predicates. For example, the following predicate:

pred nonEmpty(l: List) {
l.head != NullValue

}

characterises nonempty lists. In order to check an assertion, or ask for models
of a predicate, the specifier has to provide bounds for the maximum number of
elements to be considered for the domains. For instance, the command

check NextInjective for 5 but 3 Data, 3 Node

checks whether assertion NextInjective is true in all possible interpretations
with at most five lists, three data items and three nodes. The command

run nonEmpty for 1 List but 3 Data, 3 Node

asks for models of predicate nonEmpty (i.e., nonempty lists) with at most one
list, three data items and three nodes. It is also possible to check a formula for
an exact number of elements in a domain.

The Alloy Analyzer receives as input an Alloy model and the selection of
an assertion to be checked. Using the bounds on the data domains, a clever
translation converts the Alloy model and the (negation of the) assertion into a
propositional formula. A model (in the mathematical logic sense) of the resulting
propositional formula is then sought for, using off-the-shelf SAT solvers. If a
model is found by the SAT solver, it is converted back into a model of the
Alloy specification that refutes the validity of the assertion in the specification.
A similar procedure is employed for retrieving models satisfying predicates.

DynAlloy [10] is an extension of the Alloy specification language for describ-
ing state change in a more convenient way (compared to the Alloy approach,
which uses predicates to specify state change). DynAlloy incorporates the no-
tion of atomic action as a basic mechanism for modifying the state (atomic
actions are similar to atomic statements in imperative programming languages).
Atomic actions are defined by means of preconditions and postconditions, given
as Alloy formulae. For instance, atomic actions for retrieving the first element
in a list and for removing the front element from a list (usually called Head and
Tail, respectively) may be specified as follows:

act Head(l:List, d:Data)
pre = { l.head != NullValue }
post = { d’ = (l.head).val }

act Tail(l:List)
pre = { l.head != NullValue }
post = { l’.head = (l.head).next }

The primed variables d’ and l’ in the specification of actions Head and Tail
denote the values of variables d and l in those states reached after the execution
of the actions. There is an important point in the definition of the semantics of
atomic programs. While actions may modify the value of all variables, we assume

that those variables whose primed versions do not occur in the post condition
retain their corresponding input values. Thus, the atomic action Head modifies
the value of variable d, but l keeps its initial value.

From atomic actions we can build complex actions, also called programs, as
follows. If α is an Alloy formula, then α? is a test action (akin to the “assert”
construct in the Java programming language). The nondeterministic choice be-
tween two (not necessarily atomic) actions a1 and a2 is denoted by a1 +a2, while
their sequential composition is denoted by a1 ;a2. Finally, ∗ iterates actions. As
is customary, a partial correctness assertion of the form {α}β} is satisfied if, for
every state e that satisfies α, all the states reachable from e through program p
satisfy β. For instance, the following is a valid partial correctness assertion for
our case study:

{ l.head != NullValue }
Head(l, d) ; Tail(l)

{ (l.head).val = d’ and (l.head).next = l’.head }

One of the important characteristics of Alloy is that its specifications can be au-
tomatically analysed using the Alloy Analyzer. As we explained before, the Alloy
Analyzer allows one to automatically verify if a given assertion holds in all inter-
pretations associated with an Alloy model, with the domain sizes being bounded
by user provided bounds. DynAlloy specifications are also subject to automated
analysis. In [10], we show how DynAlloy specifications can be translated into
Alloy specifications, so that we can indirectly analyse DynAlloy specifications
using the Alloy Analyzer. In order to do this, the specifier only needs to provide
an extra bound, one to be associated with the maximum number of iterations
to be considered.

The case study model employed in this article originates from Java code.
Our translation from Java to DynAlloy adopts the object model of JAlloy [14]
in order to handle complex data. JAlloy translates Java programs directly to
Alloy models. The JAlloy model of signatures List and Node requires just basic
signatures (without fields)

sig List { } sig Node { }

and fields are defined as binary relations

head : List -> one (Node+NullValue)
val : Node -> one Data
next : Node -> one (Node+NullValue)

The modifier “one” forces these relations to be total functions. They can be
modified by the DynAlloy actions. An action SetNext, modelling the update of
the value of attribute next for a given node, can now be specified as follows:

act SetNext(n1,n2:Node+NullValue,next:Node->one(Node+NullValue))
pre = { n1 != NullValue }
post = { next’ = next ++ (n1 -> n2) }

where ++ is relational overriding.

/*@ private invariant

@ (\forall Node n; \reach(this.head).has(n); !\reach(n.next).has(n));

@*/

/*@ public normal_behavior

@ assignable theSet;

@ ensures this.theSet.equals(\old(this.theSet).difference(s.theSet));

@ also

@ private normal_behavior

@ assignable head;

@*/

public void removeAll(CharSet s) {

if (this.head != null) {

Node current = this.head;

Node prev = null;

while (current!=null) {

if (s.isMember(current.value)) {

if (prev!=null) prev.next = current.next;

else this.head = current.next;

} else prev = current;

current = current.next;

} } }

Fig. 1. JML-Annotated code to be analysed in this article.

3 From JML–annotated Java Code to DynAlloy

Finding the right case study for analysing our technique is a difficult task. Seek-
ing for such an appropriate case study, which would allow for a controlled increase
of code size, and to check some non trivial properties of the code under consid-
eration, we decided our case study to be a Java program solving the following
simple problem:

Given a linked list l (holding characters as information) and a set S of
characters as input, remove from l all nodes holding elements in S.

The actual code, including the corresponding JML annotations, is provided in
Fig. 1. This program, although simple, is in our opinion fairly adequate, since the
size of code can be increased in a controlled way by unrolling the loop required
for traversing the list as many times as deemed appropriate. Moreover, it also
allows us to check properties such as that the representation invariant, saying
that lists are acyclic, is preserved by this program, as well as checking other
related properties, such as that the elements removed are no longer part of the
list. Notice that expressing the former (see Fig. 1) requires quantification and
reachability predicates, which are constructs hard to analyse for most analysis
techniques.

In this section we will provide some details regarding how the translation
from annotated Java code to DynAlloy is performed, using parts of our case

study. A more thorough description can be found in [8, 13]. Our program involves
statements for assignment and attribute modification. These are modelled as
atomic DynAlloy actions, in the following way:

act assign(l:A, r:A) act SetF(l:A, r:B, F:A->one B)
pre { true } pre { l != NullValue }
post { l’ = r } post { F’=F++(l->r) }

In the definition of action SetF, the binary relation F gets modified by the action.
Complex programs are translated as follows:

P1 ; P2 -> T(P1);T(P2)
if (C) then P1 else P2 -> (C’?;(P1))+(!C’?;(P2))
while (C) P -> (C’?;P)*;!C’?

where C’ is the Alloy translation of predicate C. JML assertions are mapped to
Alloy formulae. For instance, the first representation invariant in our case study,
which constrains lists to be acyclic structures, is translated into the following
Alloy formula:

all n : Node n | n in this.head.(*next) => !(n in n.(^next)). (1)

This translation is completely automated.
If formula (1) is denoted by NoCycle(this, head, next, val), and P is

the DynAlloy program obtained from our case study (see Fig. 2), the problem
to solve is expressed as the following partial correctness assertion, that we will
call NoCyclePreserved:

{ NoCycle(this, head, next, val) }
P

{ NoCycle(this’, head’, next’, val’) }

In order to make the analysis simpler, we will make use of the following
DynAlloy atomic action (whose correctness should be checked at a later stage
against some implementation):

act isMember(result:boolean, s:set Char, c:Char)
pre { true }
post { result’ = true <=> c in s }

4 SAT-Based Predicate Abstraction for DynAlloy Models

We now present the mechanism employed in order to abstract DynAlloy spec-
ifications. As we mentioned, the mechanism is based on predicate abstraction
and counterexample guided abstraction refinement. We will assume that the
reader has some basic acquaintance with the subject as presented in [12, 6].
Briefly, standard predicate abstraction works as follows. Given a transition sys-
tem P = 〈S, Init , τ〉, where S is the set of states, Init a formula characterising

act RemoveAll(this: List, curr, prev: Node+NullValue, S: set Char,

value: Node -> one Char, next: Node -> one (Node+NullValue),

head: List -> one (Node+NullValue))

01. (this.head != NullValue)?;

02. (assign(prev, NullValue);

03. assign(curr, this.head);

04. ((curr != NullValue)?;

05. (((

06. (curr.value in S)?;

07. ((prev != NullValue)?;

08. setNext(prev, curr.next, next)

09. +

10. (prev = NullValue)?;

11. setHead(thisValue, curr.next, head)

12.))

13. +

14. ((curr.value !in S)?;

15. assign(prev, curr)

16.))

17. assign(curr, curr.next)

18.)

19.)*;

20. (curr = NullValue)?

21.)

22. +

23. ((this.head = NullValue)?;

24. skip

25.)

Fig. 2. DynAlloy specification corresponding to program removeAll.

the set of initial states, and τ a set of transitions (i.e., binary relations over S),
one starts by providing some predicates φ1, φ2, . . . , φn over S. The main idea is
to consider an abstraction QA of the lattice ℘(S) of state properties over S, to-
gether with two functions α : ℘(S)→ QA and γ : QA → ℘(S), relating QA and
℘(S) in such a way that α(γ(QA)) = QA and, for every s ∈ ℘(S), s ⊆ γ(α(s)).
That is, the pair 〈α, γ〉 forms a Galois connection between QA and ℘(S). In
predicate abstraction, QA has a particular form, it is composed by the mono-
mials over n boolean variables B1, B2, . . . , Bn representing the truth values of
φ1, φ2, . . . , φn, respectively; a monomial is either true or false, or a conjunction
of literals (Bi or ¬Bi) in which each Bi appears at most once (positively or neg-
atively). This set clearly forms a lattice, where the atoms (which represent the
abstract states) are the canonical monomials, i.e., the monomials in which each
Bi appears exactly once. The concretisation function γ : QA → ℘(S) is simply
defined as γ(sA) = {s ∈ S|s |= sA[φi/Bi]} whereas the abstraction function is
given by:

α(s) =
∧

i∈1..n

{Bi|s |= φi} ∧
∧

i∈1..n

{¬Bi|s |= ¬φi}

As explained in [12], this results in a more efficient way of calculating the abstract
model from a concrete one.

We would like to provide the above described abstraction mechanism for Dy-
nAlloy specifications. As we mentioned, atomic actions are the basic mechanism
for characterising state change in DynAlloy, and typically have the following
form:

act a(s: State)
pre { pre(s) }
post { post(s,s’) }

for some designated state signature State. In order to apply predicate abstrac-
tion, we need a number of predicates φ1(s), φ2(s), . . . , φn(s) over the state sig-
nature State. In our case, we consider as an initial set of abstraction predicates
the individual conjuncts in the postcondition of the assertion, and the conditions
extracted from the source code of the program (which appear in test actions in
the DynAlloy translation):

this.head != NullValue curr != NullValue
curr.value in S prev != NullValue

Now let us describe how the abstract DynAlloy program is represented. Since in
this case we have five predicates (the above four plus the postcondition of the
assertion), we can characterise the abstract state space by the following AState
Alloy signature:

sig AState { p0, p1, p2, p3, p4 : Boolean }

The idea behind our characterisation of the abstract DynAlloy program is, as the
reader might expect, that a particular atom of signature AState will represent
exactly one abstract state. It is easy to see what are the concrete states associated
with an abstract state s: those that satisfy exactly those φi’s for which s.pi is
true.

We now need to compute abstract actions characterising the abstract be-
haviour of each of the concrete atomic actions. Let us first consider atomic
actions in isolation. Abstracting the (concrete) precondition pre of a given ac-
tion a is not difficult. We need to decide which are the corresponding elements
of the abstract lattice QA, i.e., the monomials, better characterising pre. This
can be done simply by checking which of the φi’s and ¬φi’s are implied by pre.
For postconditions, on the other hand, the process is slightly more complicated.
The reason is that, as it is shown in the actions for our DynAlloy program, the
postconditions are not state formulae, but relations describing how the states
previous to the execution of the actions are related to the corresponding states
after the execution of the actions. Thus, what we actually need to check, for an
atomic action with precondition pre(s) and postcondition post(s,s’), is the
abstract state corresponding to the strongest postcondition of pre(s) according
to post(s,s’). We use the Alloy Analyzer in order to check these assertions.

The process just described for computing the abstraction of atomic actions,
although correct, generally leaves us with too coarse abstractions, which would
produce an important number of spurious counterexamples when checking the
abstract program, even when the property being checked is invalid. The reason
for this is that this kind of abstraction only takes into account the precondition
of the action, and not the information regarding the context in which the action
is used. We will use these abstractions as a starting point, and will compute the
abstractions using the following more sophisticated approach.

Suppose that we have to check a DynAlloy assertion of the form:

{ pre a } post a }

Notice that every DynAlloy assertion check needs two different bounds, one lim-
iting the size of the domains, and another one bounding loops. Let us consider
these to be kd and kl, respectively. We will start by unrolling the loops in P
according to bound kl, thus obtaining a sequential program PS , without loops.
Our abstraction process will consist of computing an abstract version of PS ’s
control graph. We will consider, initially, basic abstractions for all atomic ac-
tions computed as described above, in terms of their corresponding pre and post
conditions and using kd as a bound. Also, we will compute the abstraction of the
precondition pre a of the assertion, also using kd as a bound. We will then start
visiting PS ’s computation tree in a depth-first fashion; so, in each step we will
choose either a test action (which can be abstracted straightforwardly, since its
associated condition is among the abstraction predicates) or an atomic action a.
For this, we check whether, for its current abstract precondition (which is not
necessarily a canonical monomial), we have already computed its corresponding
abstract postcondition. If not, we concretise the current precondition, and com-
pute the abstraction of the corresponding concrete strongest postcondition (for
these checks, we also use kd as a bound). Since PS ’s computation tree is finite
and acyclic (due to the absence of loops, which we have previously unrolled),
this process is guaranteed to terminate. If we reach a final abstract state (a leaf
in the computation tree for the abstract version of PS) in which the abstraction
of the postcondition is not satisfied, then we found an abstract counterexample.
Notice that the postcondition of the assertion is precisely characterised in the
abstract program, since it is included in the set of abstraction predicates. If no
abstract counterexample trace is found, then the property has been checked valid
within the established bounds.

If an abstract counterexample is found, then we have to check whether it
is a spurious one or not. If it is not spurious, the property is invalid, and we
find a counterexample as the concretisation of the obtained abstract trace. If, on
the other hand, it is spurious, we employ a traditional counterexample guided
abstraction refinement as presented in [7]. We find the abstract state in which the
spurious counterexample “breaks” (i.e., where it cannot be further concretised),
and employ the predicate discovery approach as described in [7].

Let us summarise this process of abstraction. It is composed of the following
steps:

1. Take program P and unroll the loops in it according to bound kl, obtaining
as a result a sequential program PS (both P and PS are concrete).

2. Compute the abstractions for pre a and post a, and for each of the atomic
actions, using the set of abstraction predicates available (initially, these are
the conjuncts of the postcondition in the concrete assertion and the condi-
tions in the program).

3. Start the verification process by visiting the computation tree for PS and
computing the corresponding abstract states along the traversal. Here, the
abstractions of the actions are used, and more detailed abstract pre- and
post-conditions are computed for their definitions when not previously con-
sidered abstract preconditions are found).

4. When a final abstract state (a leaf in the computation tree) is reached, there
are two possibilities.

(a) The abstract state satisfies the abstraction of the postcondition. In this
case, we continue the visit of the tree. If the whole computation tree has
been visited, then the property has been successfully checked (for the
given bounds).

(b) The abstract state violates the abstract postcondition. In this case, we
have found an abstract counterexample. We concretise the corresponding
trace, and if it corresponds to a concrete counterexample, the property
being checked is invalid. If not, the counterexample is spurious, and is
used to calculate a new abstraction predicate. We incorporate the new
predicate to our set of abstraction predicates, and go back to step 2.

It is important to notice how the above described abstraction mechanism
allows us to improve analysability. In the straightforward approach (without
abstraction), two variables make the size of the propositional formula resulting
from the DynAlloy assertion to be checked grow, namely kd and kl. Usually,
these two variables in combination make the formula too big to be handled with
the available resources. Using the above described abstraction mechanism, the
analysis is split into various checks in order to build the abstraction, each of which
is only affected by the kd bound. The only checkings affected by both bounds
are the ones corresponding to the concretisation of abstract counterexamples.
However, these are generally much simpler than checking the original program,
since the trace corresponding to an abstract counterexample is only a sequential
program with no branching nor loops (branching has an important negative
impact in checking DynAlloy’s assertions).

We present below some experimental results regarding the application of the
abstraction mechanism just described, in comparison with the straightforward
(no abstraction) SAT analysis. However, the described (traditional) abstraction
mechanism is not sufficient, and we will need to perform some optimisations
in order to gain an acceptable performance for the abstraction based analyses.
These optimisations are described in the next section.

5 Improving the Abstraction based Analysis

In this section we present a few optimisations that we applied to the above
described traditional abstraction approach. The contribution, in terms of per-
formance in the analysis, that these optimisations provided are reported later
on, in the section on experimental results.

5.1 Program Atomisation

Program atomisation is an abstraction technique for DynAlloy programs that al-
lows us to contribute to scaling analysability up by replacing (arbitrary) complex
programs by atomic actions with the same behaviour. The analysis improves be-
cause the SAT-solver does not need to look for intermediate valid states matching
the program behaviour. Generally, the use of program atomisation is not fully
automated, although the way in which we will use it here, a restricted form,
enables us to fully automate it. In the context of this article, atomisation will
have a great impact, because the removal of intermediate states favours abstrac-
tion: intermediate states (when these are temporary) typically cause breaks in
spurious counterexamples, and possibly the introduction of further abstraction
predicates characterising the corresponding intermediate (temporary) state sit-
uations. We will automatically perform atomisation in order to abstract away
certain intermediate states, via the following atomisation policy:

Consider, as a program to be atomised, any maximal sub-path of the
control flow graph that does not involve tests.

Notice that program atomisation is applied before the program is unrolled ac-
cording to the bound on iteration.

We still have to provide a method for automatically building the atomisa-
tions. Let us consider atomic actions A1 and A2 specified as follows:

{ Q(s) } { S(s) }
A1(s) A2(s)

{ R(s,s’) } { T(s,s’) }

The atomisation of the sequential composition A1 ; A2 is defined as the
atomic action A specified by:

{ Q(s) && (all st | R(s,st) => S(st)) }
A

{ some i | R(s,i) && T(i,s’) }

Notice that A’s precondition characterises exactly those states that satisfy the
precondition of A1, and upon execution of A1 lead only to states satisfying A2’s
precondition. On the other hand, the postcondition clearly models the sequential
composition of the behaviours of A1 and A2. We are only defining the atomisation
for the sequential composition of two actions. If more actions are to be atomised,

act atomAssignPrevCurr(prev,prevVal,curr,currVal:Node+NullValue)

pre = { true }

post = { prev’ = prevVal && curr’ = currVal }

act atomSetNextAssCurr(l,r: Node+NullValue,next: Node->one(Node+NullValue),

curr,currVal: Node+NullValue)

pre = { l != NullValue }

post = { next’ = next++(l->r) && curr’ = currVal }

Fig. 3. Atomisations for program removeAll.

the process can be iterated. It is straightforward to prove that given actions
A1, A2, A3, atomising first A1 and A2 (and the result with A3) yields an action
equivalent to the one resulting from first atomising A2 and A3. Moreover, in order
to simplify the resulting atomisation, notice that:

1. Whenever A2’s precondition is true, A’s precondition reduces to Q(s).
2. If A1 and A2 modify disjoint sets of state variables, we can proceed as follows.

Let the state variables s = S0 ∪ S1 ∪ S2, with S0, S1, S2 disjoint, and such
that A1 modifies S1 and A2 modifies S2. The postcondition then simplifies
to

R(S0 ∪ S1 ∪ S2, S0 ∪ S′1 ∪ S2) && T(S0 ∪ S′1 ∪ S2, S0 ∪ S′1 ∪ S′2).

We perform atomisation at the very beginning, and include simplifications as
the ones mentioned to be applied on the resulting atomisations. For our case-
study, the original DynAlloy program (see Fig. 2) is atomised using the actions
in Fig. 3.

5.2 Detection of Induction

Consider cases in which the program we are trying to check is of the form:

P = Init; (a0 + · · ·+ an)∗

with each ai not necessarily atomic. Moreover, suppose that we check the prop-
erty under consideration incrementally, i.e., we check the property for kl only
after we checked it for all loop bounds smaller than kl. In these cases, we can con-
sider the following rule in order to “prune” the construction of the computation
tree corresponding to PS in the verification and abstraction process:

if s is the current abstract state (at some point after initialisation), and
the abstraction of ai leaves us again in the abstract state s, then we
can stop building the abstract graph for PS after the last s, because the
abstract states resulting from the last s will necessarily be visited as
branches of the first s.

The idea behind this rule is graphically depicted in Figure 4. The fact that this
rule is applied only in incremental verifications is crucial, since it corresponds
essentially to performing a kind of iterative deepening visit of the abstract graph,
looking for violations of the property (then we only advance in the process if
we have not found shorter violations). Also, the fact that atomic actions are
repeated in the graph, so that we can use the abstractions produced for these in
other parts of the graph, is relevant for this rule. Notice also that, given that we
apply program atomisation prior to performing the loop unrolls, it is guaranteed
that we are not abstracting away final states, only states which are intermediate
within loops.

Si

Si Sj Sk

a1 a2
a3

Si Sj Sk

a1 a2 a3

Fig. 4. Graphical description of the pruning rule for detecting convergence in invariant
checks.

The case in which we are checking whether the program preserves the repre-
sentation invariant of sets over linked lists, i.e., whether it leaves the resulting
list acyclic and with no repeated elements, corresponds to the above described
schema. As we describe below, in the section regarding experimental results, this
rule allowed us to find a convergence of the representation invariant property af-
ter four loop unrolls. The reason for this is that all abstract final states after
four loop unrolls are “already visited” states in the computation tree, enabling
us to infer that further loop unrolls cannot lead to violations of the property.

6 Experimental Results

For running the experiments we used a personal computer with a 2Ghz Core
2 Duo processor, with 2GB of RAM, running the Alloy Analyzer 4.1.5 under
Ubuntu GNU/Linux 2.6.22, 32 bits.

We attempted to verify the following assertions regarding our case study:

NoCyclePreserved:
all n: Node |

n in thisV.headV.(*nextV) => n !in n.nextV.(*nextV)

ElementsRemoved:
all n: Node |

n in (thisV.headV.(*nextV) - (currV.(*nextV))) =>
n.valueV !in (c1+c2+c3)

The first of these, NoCyclePreserved, affirms that the list is acyclic, while the
second one, ElementsRemoved, in combination with the fact that curr is null at
the end of the algorithm, ensures that the characters in the set to be removed,
passed as a parameter, are indeed removed from the list.

Without the use of abstraction, if we unroll the only loop in the program 23
times the analysis of assertion NoCyclePreserved exhausts the available mem-
ory, causing a run time crash of the Alloy Analyzer (the corresponding CNF
formula had 620841 variables, 30768 of which are primary, and a total of 1339236
clauses). In this case, the scopes for signatures Char and Node were set to 24.
Also, if we unroll the loop 51 times, a runtime exception is thrown by the Al-
loy Analyzer due to insufficient memory to construct the CNF formula to be
analysed.

Using the traditional predicate abstraction mechanism described, without
the further optimisations, 44 seconds of SAT analysis time were required for
our tool to check the property NoCyclePreserved. Two new predicates were
introduced during the process. Thanks to the fact that our method can take
advantage of already calculated abstract actions, performing SAT Solving was
only necessary for the first four loop unrolls. For the same assertion, but after
applying program atomisation to the original specification, the SAT time was
reduced by almost 50%: 25 seconds. The number of predicates and loop unrolls
required to discover new abstract actions, though, remained the same. The above
described induction detection mechanism allows us to reduce the number of
nodes in the abstract execution tree to be visited. Notice that, given a certain
number k of loop unrolls, the size of the abstract execution tree for our program
is exponential with respect to k. More precisely, in the worst case (when the
whole tree has to be visited) we need to visit 1 +

∑n
i=1 2i +

∑n−1
i=1 2i nodes

for the atomised program and 1 +
∑n

i=1 2i + 2 ∗
∑n−1

i=1 2i nodes for the non
atomised case. For instance, if we unroll the loop in the program four times for
the atomised case, the abstract tree will be composed of 45 nodes. On the other
hand, by employing induction detection the procedure can be terminated after
visiting 19 nodes, for the assertion NoCyclePreserved. On the other hand, the
abstract tree for the nonatomised program, with the loop unrolled four times,
will have 59 nodes, and using induction detection our algorithm visited only 30
of them. Furthermore, induction detection allows us to conclude that we can stop
the search for abstract counterexamples (of any size), since, as it was discussed
in section 5.2, no new states violating the property can appear. As it is shown
by this example, this technique can reduce the search state space considerably.

On the other hand, if we want to verify the property ElementsRemoved us-
ing again the traditional abstraction mechanism, the abstraction process diverges
due to excessive introduction of abstraction predicates. Nevertheless, using pro-
gram atomisation on the model, and introducing the right auxiliary invariants

(prev.next equals curr, prev and curr are reachable from the head of the list,
and the list is acyclic) as abstraction predicates, the process converges again very
quickly (9 seconds of SAT time). New atomic actions appeared when verifying
the property up to the third iteration, and 13 nodes of the (atomised) abstract
computation tree were visited by our algorithm. A total of 8 abstraction predi-
cates were necessary. It is worth mentioning that NoCyclesPreserved was used
as an abstract invariant (i.e., a predicate that is valid before and after execu-
tion of each abstract action). We did so safely because NoCyclesPreserved was
previously verified to be a concrete invariant. Notice also that, since the pro-
gram that we are considering is the same as for the previous case, the number
of nodes of the execution tree can be calculated using the same formula (there
are 18 nodes in the graph for 3 loop unrolls).

Of course, obtaining the above mentioned auxiliary predicates automatically
would require the use of invariant generation techniques. We used the “global
invariants” generation mechanism of the STeP tool [2], but in order to do this
we had to produce an ad hoc representation of the program in STeP’s language
SPL. Clearly, this requires further investigation, and is part of our future work.

An important fact to mention regarding the experiments is that, since the Dy-
nAlloy specification originates from code, atomic actions essentially correspond
to assignments, and therefore these are “invertible”, making the calculation of
weakest preconditions in sequential programs (when examining abstract coun-
terexamples) very efficient. It is expected that this efficiency will not be preserved
when considering other kinds of DynAlloy specifications.

7 Related Work

There exist many tools and approaches applying ideas of predicate abstraction
for formal verification, such as for instance the work reported in [6, 7]. While
our approach is strongly based on Das and Dill’s technique for predicate ab-
straction, it differs from existing tools in that ours is tailored to SAT-solving
through Alloy and DynAlloy, as opposed to most other tools, whose associated
verification technique is model checking. In [4] SAT-solving is used to construct
the abstraction, but the more conventional techniques based on symbolic model
checking are used in the remaining parts of the process. With respect to abstrac-
tion in the context of Alloy and DynAlloy specifications, the most closely related
approaches we know of are the work of Taghdiri [19] on the use of predicate ab-
straction in JAlloy analysis, and the work of some of the authors of this paper
on program atomisation [11]. The work of Taghdiri is different from ours since
her abstraction mechanism faithfully represents the code of a Java program,
except for the method calls, where abstraction is applied. The abstractions ob-
tained for procedure calls are somehow “reusable” (they can be used for other
places in the program where the procedure is also called), as in our approach;
however, her mechanism for discovering new predicates is completely different,
since in her case the spurious counterexamples are not really abstract runs, but
concrete ones where the abstraction is present only in the form of underspeci-

fied effects for procedure calls. SATURN [22] is, as our tool, completely based
on SAT-solving. The techniques it uses to improve analysability are: program
slicing (at the intra-procedural level) and a kind of abstraction called function
summaries to modularise the analysis at the inter-procedural level. SATURN
models programs faithfully (no abstraction is performed).

8 Conclusions and Future Work

We have investigated the application of predicate abstraction for improving the
analysis of DynAlloy specifications. We have concentrated in a particular kind
of DynAlloy specifications, namely those resulting from a translation from anno-
tated Java code. We plan to exploit the experiences gained in providing abstrac-
tion for this kind of DynAlloy specifications in order to provide a mechanism
applicable to a wider class of these. We exploited the principal analysis tech-
nique associated with Alloy and DynAlloy specifications, SAT based analysis,
in order to build, analyse and improve the abstractions in an automated way,
based on Das & Dill’s algorithm for abstraction refinement [6], complemented
primarily with an automated program atomisation mechanism. We have also
provided a mechanism for detecting convergence in the unrolling process for a
certain schema of DynAlloy programs.

The results of the experiments conducted, based on a case study over a model
originated from a JML annotated Java program, show that the improvements
performed to the traditional predicate abstraction mechanism had an important
impact for one of the properties we checked. The reason is that these constituted
an economy in abstraction predicates to be introduced during verification, as well
as in the size of the formulae analysed when examining abstract counterexamples
for abstraction refinements. However, this is just an initial attempt, and it is clear
that we need to develop more case studies.

There are several directions for future work. We are planning to experiment
with the use of automated theorem provers to attempt to simplify the formulae
introduced in the process of improving abstractions, for eliminating unnecessary
quantifiers, amongst other things. Invariant generation techniques, integrated in
the approach, will have in our opinion an important positive impact, so this is
one of the directions we want to explore. We are also planning to incorporate
a differentiated treatment for mutant and non mutant objects in the DynAl-
loy specifications, in order to make the construction of the abstractions more
efficient.

It is also important to mention that our approach corresponds only to intra-
procedural analysis. We plan to study the combination of the presented approach
with Taghdiri’s abstraction for Alloy [19].

References

1. T. Ball, B. Cook, S. Das and S. Rajamani, Refining Approximations in Software
Predicate Abstraction, in Proceedings of International Conference on Tools and

Algorithms for the Construction and Analysis of Systems TACAS 2004, Barcelona,
Spain, LNCS, Springer, 2004.

2. N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma and T. Uribe,
Verifying Temporal Properties of Reactive Systems: a STeP Tutorial, in Formal
Methods in System Design, vol 16, 2000.

3. E. Clarke, O. Grumberg and D. Long, Model checking and abstraction, ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 16(5), ACM Press,
1994.

4. E. Clarke, D. Kroening, N. Sharygina and K. Yorav, Predicate Abstraction of ANSI-
C Programs using SAT, Technical Report CMU-CS-03-186, Carnegie Mellon Uni-
versity, 2003.

5. P. Cousot, Abstract interpretation, ACM Computing Surveys, 28(2), ACM Press,
1996.

6. S. Das and D. Dill, Successive Approximation of Abstract Transition Relations, in
Proceedings of the IEEE Symposium on Logic in Computer Science LICS 2001,
IEEE Press, 2001.

7. S. Das and D. Dill, Counterexample Based Predicate Discovery in Predicate Ab-
straction, in Proceedings of International Conference on Formal Methods in Com-
puter Aided Design FMCAD 2002, Portland, USA, LNCS, Springer, 2002.

8. Dennis, G., Chang, F, and Jackson D. 2006. Modular Verification of Code with
SAT. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2006, Portland, Maine, USA. 109–120.

9. M. Frias, C. López Pombo, G. Baum, N. Aguirre and T. Maibaum, Reasoning
about static and dynamic properties in alloy: A purely relational approach, ACM
Transactions on Software Engineering and Methodology (TOSEM), 14(4), ACM
Press, 2005.

10. M. Frias, J.P. Galeotti, C. López Pombo and N. Aguirre, DynAlloy: upgrading
alloy with actions, in Proceedings of the 27th International Conference on Software
Engineering ICSE 2005, St. Louis, Missouri, USA, ACM Press, 2005.

11. M. Frias, J.P. Galeotti, C. López Pombo and N. Aguirre, Efficient Analysis of Dy-
nAlloy Specifications, in ACM Transactions on Software Engineering and Method-
ology (TOSEM), ACM Press.

12. S. Graf and H. Säıdi, Construction of abstract state graphs with PVS, in Proceed-
ings of 9th International Conference on Computer Aided Verification CAV 1999,
Haifa, Israel, LNCS 1254, Springer, 1997.

13. Galeotti J.P., and Frias M.F., DynAlloy as a Formal Method for the Analysis of
Java Programs, in Proceedings of IFIP Working Conference on Software Engineer-
ing Techniques (SET06), Warsaw, 2006, Springer.

14. Jackson, D. and Vaziri, M., Finding Bugs with a Constraint Solver, in Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA), August
21-24, 2000, Portland, OR, USA. ACM, pp. 14–25.

15. D. Jackson, Alloy: a lightweight object modelling notation, in ACM Transactions
on Software Engineering and Methodology (ACM TOSEM), Vol. 11, Nro. 2, 2002.

16. D. Jackson, Software Abstractions: Logic, Language, and Analysis, The MIT Press,
2006.

17. S.-K. Kim and D. Carrington, Formalizing the UML Class Diagram Using Object-
Z, in Proceedings of the 2nd International Conference on The Unified Modeling
Language UML ’99, Fort Collins, CO, USA, LNCS 1723, Springer, 1999.

18. C. Snook and M. Butler, UML-B: Formal modeling and design aided by UML,
ACM Transactions on Software Engineering and Methodology (TOSEM), 15(1),
ACM Press, 2006.

19. M. Taghdiri, Inferring Specifications to Detect Errors in Code, in Proceedings of
the 19th International Conference on Automated Software Engineering ASE 2004,
September 2004, Austria.

20. S. Uchitel, R. Chatley, J. Kramer and J. Magee, LTSA-MSC: Tool Support for
Behaviour Model Elaboration Using Implied Scenarios, in Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS 2003, Warsaw, Poland, LNCS 2619, Springer, 2003.

21. J. Woodcock and J. Davies, Using Z: Specification, Refinement and Proof, Prentice-
Hall, 1996.

22. Xie Y., and Aiken A. Saturn: A Scalable Framework for Error Detection Using
Boolean Satisfiability, in ACM-Transactions on Programming Languages and Sys-
tems (TOPLAS), to appear.

