
DynAlloy Analyzer: A Tool for the Specification and Analysis of
Alloy Models with Dynamic Behaviour

Germán Regis
Dept. of Computer Science,

University of Rio Cuarto, Argentina

César Cornejo
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Simón Gutiérrez Brida
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Mariano Politano
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Fernando Raverta
Digital Communications Lab,

University of Cordoba, Argentina

Pablo Ponzio
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Nazareno Aguirre
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Juan Pablo Galeotti
Dept. of Computer Science,

University of Buenos Aires, Argentina

Marcelo Frias
Dept. of Software Engineering,

Buenos Aires Institute of Technology,
Argentina

ABSTRACT
We describe DynAlloy Analyzer, a tool that extends Alloy Analyzer
with support for dynamic elements in Alloy models. The tool builds
upon Alloy Analyzer in a way that makes it fully compatible with
Alloy models, and extends their syntax with a particular idiom, in-
spired in dynamic logic, for the description of dynamic behaviours,
understood as sequences of states over standard Alloy models, in
terms of programs. The syntax is broad enough to accommodate
abstract dynamic behaviours, e.g., using nondeterministic choice
and finite unbounded iteration, as well as more concrete ones, using
standard sequential programming constructions. The analysis of
DynAlloy models resorts to the analysis of Alloy models, through
an optimized translation that often makes the analysis more effi-
cient than that of typical ad-hoc constructions to capture dynamism
in Alloy.

Tool screencast, binaries and further details available in:
http://dc.exa.unrc.edu.ar/tools/dynalloy
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1 INTRODUCTION
Software models are an important part of most software develop-
ment approaches. They come in many forms and concern different
stages of software development, from requirements, where problem
domain concepts relevant to the system as well as its goals need to
be explicitly described [33], to design and implementation, where
design concepts and implementation details, conveying decisions
made during software construction, need to be (abstractly) captured
[17]. Since models often concentrate on a particular aspect of the
problem or system being described, they are easier for developers
to grasp and more useful to communicate ideas, as well as for antic-
ipating properties or concerns that arise, for instance, from design
decisions or problem domain facts.

Formal models, i.e., models in a language with a formal syntax
and precise semantics, are better suited for rigorous analysis than
their informal counterparts, thanks to the fact that they have a
precise meaning from which one can logically obtain conclusions
[30]. Moreover, if a formal language is appropriately designed, its
specifications can also be automatically analyzed, thus relieving
their users from having to manually perform logical reasoning from
specifications [34].

Alloy [21] is a popular formal specification language, that has
been carefully designed to support automated analysis. Alloy fea-
tures a simple syntax, with a few constructs with intuitive meaning,
and a simple formal semantics, based on relations. Both the syntax
and semantics are based on concepts that many developers are
familiar with. This simplicity plays an important role in making the
language’s specifications automatically analyzable. Indeed, Alloy
is supported by the Alloy Analyzer, a powerful analysis tool that
allows one to search for instances of specifications as well as to
check intended properties of models by resorting to SAT solving.

Alloy is a very expressive language, suitable for specifying a
wide variety of static properties of systems, through formulas in
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relational logic, the logical formalism underlying Alloy, used to
capture the intention of operations, assumed and intended prop-
erties of systems [20]. Alloy’s expressiveness makes the analysis
of specifications based on SAT solving necessarily incomplete: one
may find counterexamples of intended properties and instances
of specified models in bounded scenarios, but the absence of such
counterexamples or instances does not imply their nonexistence
[20]. While Alloy is expressive enough so that one may encode
dynamic properties of systems, i.e., properties that predicate over
system executions or successive state changes of some sort, models
involving such kind of properties often become intricate by the
inclusion of ad-hoc constructions to capture dynamism (cf. [21, 22]).
This kind of ad-hoc characterizations of state change and dynamic
behaviour is not standardized, so models requiring such kind of
construction may significantly differ from one another, reducing
model understandability. Moreover, characterizations of dynamic
behaviour over Alloy specifications have a significant impact in
analyzability, in many cases causing serious scalability issues that
call for sophisticated optimizations that reduce readability even
further [10–12].

The DynAlloy language, originally introduced in [11] and further
developed in [10, 12, 13], deals precisely with the above described
issue. DynAlloy extends Alloy’s syntax with a particular idiom,
inspired in dynamic logic [18], for the description of dynamic be-
haviours, understood as sequences of states over standard Alloy
models, in terms of programs. The DynAlloy syntax is broad enough
to accommodate abstract dynamic behaviours, e.g., using nonde-
terministic choice and finite unbounded iteration, as well as more
concrete ones, using standard sequential programming construc-
tions. The analysis of DynAlloy models resorts to an analysis of
Alloy models, through a optimized translation that often makes the
analysis more efficient than that of typical ad-hoc constructions to
capture dynamism in Alloy [10, 12].

In this tool demonstration paper we describeDynAlloy Analyzer,
a tool that extends the highly regarded Alloy Analyzer with support
for dynamic elements in Alloy models. The tool builds upon Alloy
Analyzer in a way that makes it fully compatible with Alloy models,
and extends the model’s syntax with elements for describing actions
(atomic state changes), abstract programs over these actions, and
correctness assertions. Programs can be run and partial correctness
assertions involving programs can be checked in DynAlloy Ana-
lyzer, in the same way that predicates can be run and assertions
can be checked in Alloy Analyzer. DynAlloy Analyzer is a complete
redevelopment of the original DynAlloy tool; while the original
tool was implemented as a separate compiler that translated DynAl-
loy specifications into Alloy ones, and did not include commands
for analysis in the notation, the new tool is integrated into Alloy
Analyzer, enabling a fully transparent usage for Alloy users, and
providing analysis commands that better reflect the style found in
Alloy specifications.

2 ALLOY MODELS WITH STATE CHANGE
Alloy is a model-oriented specification language, similar to other
formal languages such as Z [31], VDM [23] and B [2]. As for these
other languages, specifications (or models, as these are more of-
ten called) are written by defining data domains, properties and

operations between these domains. Data domains are defined in
Alloy via signatures. Signatures represent sets of atoms, and can be
extended, with signature extension representing set containment.
A signature is called abstract if it does not have proper elements,
but all its elements are those of its extending signatures. Alloy does
not allow one to define atoms in its models; these can be captured
instead through singleton signatures. Consider the following sig-
nature definitions taken from the Farmer model (a model of the
well-known puzzle that asks whether it is possible for a farmer to
cross a river with a chicken, a sack of grain and a fox, with a boat
that can hold the farmer and at most one element, and avoiding that
the fox eats the chicken or the chicken the grain, if they become
unsupervised):

abstract sig Object {
eats: set Object

}

one sig Farmer, Fox, Chicken, Grain extends Object { }

fact { eats = Fox->Chicken + Chicken->Grain }

Data domain Object is composed of exactly four “elements” (sin-
gletons), Farmer, Fox, Chicken and Grain (signatures that extend
a same signature are disjoint). As the definition of Object shows,
signatures can have fields, that represent relations; in the case of
field eats, it denotes a relation between objects, indicating what
objects each object eats.

We would like to refer to a state changing situation, that main-
tains two sets of objects, those on the near and far sides of the river,
respectively. The usual Alloy way of capturing this situation is via
an additional signature for states, and using total orders (from a
library specification) of states to capture executions, as follows:

open util/ordering[State]

sig State {
near, far: set Object

}

We then need to impose restrictions, via Alloy facts (assumed prop-
erties of the model), to capture that in the initial state all objects
are in the near side of the river, and how transitions are governed
(unsupervised objects eat other objects, farmer can only take one
other item with him, etc.).

fact { first.near = Object && no first.far }

pred crossRiver[from, from', to, to': set Object] {
one x: from | {

from' = from - x - Farmer - from'.eats
to' = to + x + Farmer

}
}

fact {
all s: State, s': s.next | {
Farmer in s.near =>

crossRiver[s.near, s'.near, s.far, s'.far]
else crossRiver[s.far, s'.far, s.near, s'.near] }

}
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Finally, the puzzle is attempted to be solved by trying to get a trace
in which, in its last state, all objects reached the far side of the river:

run { last.far = Object } for exactly 8 State

3 STATE CHANGE: THE DYNALLOY
APPROACH

Let us describe how the Farmer model would be modeled in DynAl-
loy. DynAlloy is an extension of Alloy for better describing state
change; the part of the model that does not deal with state change is
done exactly as in the case of Alloy: we will maintain the definition
of Object and composing signatures, and the facts constraining
them. But, we will not use signature State, nor linear orderings.
Instead, we will use actions to describe state change. We will first
use atomic actions, to indicate basic state change steps, and then
programs to get the same traces got in the Alloy approach.

Atomic Actions. Atomic actions are the basic building block for
describing state change. An atomic action is specified by indicating
what it applies to (the parameters, what the action changes), the re-
quired conditions to execute the action (the enabling condition, that
we call precondition), and the effect of the action (the postcondition).
As a first example of an atomic action, consider the following:

act crossRiver[from, to: set Object] {
pre { Farmer in from }
post { one x: from |

from' = from - (x + Farmer) - from'.eats &&
to' = to + (x + Farmer)

}
}

In a DynAlloy action, the parameters define the state the action
changes, in this case, the formal parameters from and to. There is
no need to define a special signature to represent the state, since
the state is implicitly defined as the parameters of the action. More-
over, it is indicated explicitly what is expected for the action to be
applicable, namely that the farmer must be in from; it is important
to remark that action preconditions are enabling conditions: when
they are not satisfied, the action cannot be executed. Finally, the
primed versions of the parameters of the action are not parameters
themselves: they refer to the state of these parameters after the
action has been executed.

Composite Actions (programs). While in Alloy characterizations
of state change, executions are described via facts that explicitly
indicate how state changes, in DynAlloy these are more conve-
niently defined by the construction of actions. Atomic actions are
the base case for describing more complex behaviours, in composite
actions or programs. The DynAlloy version of what is captured via
orderings in the Alloy approach, is shown below. It features vari-
ous program constructs: assumptions, test actions, nondeterministic
choice, sequential composition, and iteration:

program solvePuzzle[near, far: set Object] {
assume (Object in near && no far);
(crossRiver[near, far] + crossRiver[far, near])*;
[Object in far]?

}

Again, it is important to remark that this program’s state is given
by its formal parameters, the sets of object near and far (no need
for a special signature representing the state). The program is com-
posed of the sequential composition of three parts. The first is an
assumption of what is expected at the beginning (i.e., an enabling
condition given as part of the code). It indicates that it is assumed
that initially all objects are on the near side of the river. The second
is a finite iteration of a nondeterministic choice of two actions;
these actions correspond to the two possibilities: either the river is
crossed from near to far or is crossed from far to near. And these
are iterated (in each iteration, any of the enabled actions might be
taken, although for this case we know that exactly one of them
will be enabled) a finite number of times. Finally, the execution is
allowed to continue only if, after the iteration, all the objects got to
the far side of the river.

DynAlloy features other mechanisms for building composite
actions, although these can all be reduced to atomic actions, se-
quential composition, tests/assumptions and iteration. They are
however very useful for more conveniently capturing some state
changing behaviours. For example, atomic action crossRiver can
be redefined in terms of a more concrete program, as follows:

act choose[x: univ, s: set univ] {
pre { some s }
post{ x' in s }

}

prog refCrossRiver[from, to: set Object] var [x: Object] {
assume (Farmer in from);
choose[x, from];
from := from - (Farmer + x);
from := from - from.eats;
to := to + (Farmer + x)

}

This program has the same effect as the atomic action crossRiver,
although not in a single, atomic step. It performs the river crossing
by nondeterministically choosing an object in the from side, and
then updating the state of from and to via atomic assignments.
Program solvePuzzle can simply call program refCrossRiver
instead of the atomic action crossRiver.

3.1 Analysis of DynAlloy Models
Alloy provides two ways of analyzing a specification: via runs,
which search for satisfying models of a given predicate, and via
asserts, which search for counterexamples of intended properties of
a specification. DynAlloy provides similar features, but targeting
the analysis of dynamic properties. These are program runs, and
partial correctness assertions. A program run is very much like a
run of a predicate. A run of a program will search for satisfying
models of the program, i.e., executions of the program. A partial
correctness assertion is, as in the context of program verification
[8, 19], an expression of the form: { pre } prog { post }, where prog
is a program, and pre and post are formulas over the state of the
program (the precondition and postcondition, respectively). Such an
assertion is true if and only if, for every execution of the program
prog, if the execution starts in a state satisfying pre, then if the
execution terminates it must do so in a state satisfying post. As
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examples of partial correctness assertions, consider the following.
The first states that objects cannot be on both sides of the river at
the same time (noQuantumObjects, an assertion also present in the
original Alloy model); the second is an assertion that states that,
once an object is lost in an execution, it cannot be resurrected.

assert NoQuantumObjects [near, far: set Object] {
pre { no (near & far) }
prog { (crossRiver[near, far] + crossRiver[far, near])* }
post { no (near' & far') }
}

assert noResurrection[near, far: set Object, x: Object] {
pre { Object in near && no far }
prog { (crossRiver[near, far] + crossRiver[far, near])*;

[x !in (near+far)]? ;
(crossRiver[near, far] + crossRiver[far, near])*

}
post { x !in (near'+far') }
}

The analysis mechanism behind Alloy Analyzer is SAT based
bounded verification (or SAT based bounded model finding). Al-
loy Analyzer employs user provided bounds, the scope, in order to
exhaustively search for counterexamples of intended properties,
within the provided bounds. DynAlloy’s main analysis mechanism
resorts to Alloy’s analysis: DynAlloy Analyzer will use Alloy An-
alyzer “behind the scenes”, in order to check a partial correctness
assertion, or run a program. But DynAlloy models have an addi-
tional source of potential unboundedness: program iteration. So, the
user will have to provide an extra bound, to indicate the maximum
number of iterations to be considered in programs (also called loop
unrolls). This is done as part of the commands for program runs and
partial correctness assertions, as in the following examples (lurs
stands for loop unrolls):

run solvePuzzle for 4 lurs 7
check noResurrection for 4 lurs 8

To automatically analyze DynAlloy specifications using Alloy
Analyzer, we translate annotated DynAlloy programs into Alloy
specifications. This is realized through a bounded version ofweakest
liberal precondition [8], as described in [10]. This predicate trans-
former allows us, given a bound n in the number of loop unrolls, to
transform a program into an Alloy predicate. This translation often
leads to better performance compared to the traditional Alloy ap-
proach to state change, as shown in [10] and with further examples
in the DynAlloy website. For atomic actions, it is straightforward;
more complex programs are translated as follows:

bwlp[д?, f ] = д =⇒ f
bwlp[p1 + p2, f ] = bwlp[p1, f ] ∧ bwlp[p2, f ]
bwlp[p1;p2, f ] = bwlp[p1, bwlp[p2, f ]]
bwlp[p∗, f ] =

∧n
i=0 bwlp[p

i , f ] .

4 RELATEDWORK
The need to capture dynamic behavioural properties over Alloy
specifications is present in a wide number of applications. Various
tools capture program semantics in Alloy, notably Forge [6, 7] and

TACO [14, 15]. The latter uses DynAlloy as an intermediate lan-
guage for reducing program verification to SAT solving, as well
as some related tools do [1, 28, 29]. These tools also significantly
exploit relational bounds as introduced through KodKod [32], and
have seen a dramatical increase in performance thanks to KodKod
being current Alloy’s model finding engine. There have also been
proposals to extend Alloy with dynamic behaviour constructs for
more abstract modeling. Besides DynAlloy [10], other extensions
such as Imperative Alloy [27] and Electrum [26], have been used
to complement Alloy with rich logical languages for dynamic be-
haviour, e.g., linear temporal logic as realized in TLA+ [25], and
use these to specify and check properties in a bounded manner.
Applications of Alloy models with dynamic behaviour appear in
the context of dynamic software architecture [4, 5], dynamic access
control policies [9], and the analysis of specifications originating
in informal languages such as the UML. Many direct uses of Alloy
also require dynamic behaviours, as is shown, e.g., in examples and
case studies in [3, 7, 21, 22].

5 CONCLUSIONS
The importance of powerful and efficient automated analysis to
accompany formal specification languages is widely acknowledged,
and the success of Alloy has been in great part due to its emphasis
in automated analysis. The significant advances in SAT solving, as
well as in improved encodings of analysis problems from different
contexts into SAT (indirectly) through Alloy and similar languages,
maintains the language being relevant in various areas of software
engineering (cf., e.g., [3, 7, 15, 16, 24]). The need for dynamic ele-
ments in Alloy models arises naturally in many of these contexts,
which is evidenced by the various approaches that have emerged,
to conveniently capture dynamic behaviours. This tool demonstra-
tion paper presented a full redevelopment of DynAlloy Analyzer, a
tool that incorporates one of these approaches into Alloy Analyzer.
This implementation is faithful to the style of the Alloy tool, e.g.,
in the way commands are issued, and how programs and partial
correctness assertions are introduced. The tool is fully compatible
with standard Alloy, produces detailed compile-time error reports,
and features a mature encoding of dynamic behaviour into Alloy
[13] that has proved to be more efficient than many similar ad-hoc
Alloy constructions for capturing dynamism.
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