
CLTSA: Labelled Transition System Analyser with
Counting Fluent support
Germán Regis∗, Renzo Degiovanni∗†, Nazareno Aguirre∗†

∗Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto, Argentina
†Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

Abstract—In this paper we present CLTSA (Counting Fluents
Labelled Transition System Analyser), an extension of LTSA
(Labelled Transition System Analyser) that incorporates counting
fluents, a useful mechanism to capture properties related to
counting events. Counting Fluent temporal logic is a formalism
for specifying properties of event-based systems which comple-
ments the notion of fluents by the related concept of counting
fluent. While fluents allow us to capture propositional states of
the behaviour of a reactive system, counting fluents are numerical
values, that enumerate event occurrences of them.

The tool supports a superset of FSP (Finite State Processes),
that allows one to define LTL properties involving counting flu-
ents, which can be model checked on FSP processes. Detailed in-
formation can be found in the tool website http://countingfluents.
weebly.com. A video highlighting the main features of CLTSA
can be found at https://youtu.be/DDLGBsNBazQ.

I. INTRODUCTION

The increasingly rich set of tools and techniques for soft-
ware analysis offers unprecedented opportunities for helping
software developers in finding program bugs, and discovering
flaws in software models. An essential part of these tools and
techniques is the formal specification of software properties.
Various formalisms and approaches have been proposed to
specify properties of different kinds of systems. In particular,
temporal logic has gained significant acceptance as a vehicle
for specifying properties of software systems, most notably
parallel and concurrent systems.

Temporal logics are more directly applicable to system
property specification when using a state based specification
approach, i.e., when one is able to refer to state properties.
Given the importance of event-based formalisms, such as
CSP [3], CCS [8] and FSP [7], some mechanisms have been
proposed to capture state properties in event-based systems,
too. Through the notion of event, which is used as a means
to represent components behaviour and interaction on event-
based formalisms, fluents are proposed in [1] in order to
enable the use of temporal logic for specifying properties
of event-based systems. Fluents are propositional variables
that allow one to capture state propositions in these systems,
in terms of activating and deactivating events. Based on the
fluent concept and with the aim of dealing with properties
of reactive systems in which the number of occurrences of
certain events is relevant, the notion of counting fluent was
introduced in [9]. As opposed to the boolean nature of a fluent,
a counting fluent represents a numerical value that enumerates

event occurrences in terms of incrementing, decrementing and
resetting events.

Of course, a convenient language for specifying system
properties is not enough: such a language must be accom-
panied by powerful tool support. In this paper we present
CLTSA, a tool that extends LTSA [7][1] with support for
counting fluents. Given an FSP model of a reactive system,
CLTSA allows one to specify counting fluents that monitor
the behaviour of the system and use them as part of counting
expressions for specifying properties. Moreover, the tool can
also model check these properties. Since LTL extended with
counting fluents is an undecidable formalism [9], our model
checking procedure needs to impose bounds on counting
fluents values, leading to a sound but inherently incomplete
model checking approach. CLTSA supports different kinds of
bounds, and a rich language to define these so that the analyses
are not over-restricted.
Contribution. Our tool support:

• Counting fluents definition in terms of system events.
• Specification of LTL properties that involve counting flu-

ents, that can be combined by a wide range of arithmetical
expressions.

• Definition of different kind of limits for counting fluents,
required by our model checking approach.

• An automated model checking algorithm that, not only
can verify a property or produce a counterexample when
it is invalid, in addition it can answer that the result is
inconclusive because the limits provided for the counting
fluents are not large enough.

• Enhance of the counterexample trace report and the trace
animator, integrated to the tool.

II. INTRODUCING CLTSA

Behaviour models are described in CLTSA in the same way
these are described in LTSA, i.e., in the FSP language [7]. In
FSP specifications, “->” denotes event prefix, “|” denotes
choice, and conditional choices can be expressed by means of
“when” clauses. Processes may be indexed and parameterised,
and can be composed in a sequential (“;”) or parallel way
(“||”).

Given a system model M, we can specify properties to be
analysed via model checking. As opposed to LTSA, properties
in CLTSA are expressed in CFLTL [9], an extension of FLTL
with support for counting fluent expressions. FLTL enriches
the LTL logic [5], [6] with fluents. A fluent Fl, defined as

Fig. 1: Editor and C.Fluent limits configurator. Fig. 2: Property checking results.

〈I, T,B〉, is a propositional variable that captures states of the
system in terms of activating (I) and deactivating (T) events,
starting with a default value B.

As we mentioned, CLTSA incorporates counting fluents,
which as opposed to the boolean nature of fluents, represent
numerical values that enumerate event occurrences in terms of
incrementing, decrementing and resetting events. The syntax
of counting fluents declaration in CLTSA is characterised by
the following grammar:

〈CFluentDef〉 ::= ‘ cfluent ’ 〈fluent name〉 ‘=’
‘<’〈incremental events set〉 ‘ , ’ 〈decremental events set 〉 ‘ , ’
〈reset events set 〉 ‘>’ ‘initially ’ 〈initial value 〉

Counting fluents can be combined to conform a counting
expression, i.e. an arithmetical expression that assert about
some state of fluents. The counting expression can be specified
with following syntax:

ε ::= 〈expr〉 〈rel op 〉 〈expr〉
〈expr〉 ::= 〈value〉 | ‘(’ 〈expr〉 ‘)’ | 〈expr〉 〈arith op 〉 〈expr〉
〈value〉 ::= 〈intValue 〉 | 〈countingFluent 〉
〈rel op 〉 ::= == | != | < | <= | >= | >
〈arith op 〉 ::= + | − | ∗ | / | %

These counting expression can be used in the properties
to perform a system analysis. As example, let us consider
the Single Lane Bridge Problem (SLB), a modelling problem
introduced in [7] (cf. Section 7.2 therein) with an additional
constraint. Besides the fact that, due to the bridge’s width, cars
circulating in different directions must be forbidden, assume
that the bridge has a maximum weight capacity. Exceeding
this capacity is dangerous, so the maximum number of cars
on the bridge must also be controlled.

To address this system analysis, as depicted in the Fig.1, in
the CLTSA editor, the counting fluent CARS ON BRIDGE
is declared to keep count of the number of cars (red or
blue) on the bridge. This value is initially 0, is incremented
at each occurrence of an enter (red or blue car) event,
and is decremented at each occurrence of an exit event.

Using CARS ON BRIDGE, we can express the weight safety
property of the bridge in a more natural way, as follows:

CAPACITY SAFE = 2(CARS ON BRIDGE <= capacity)

The user can find this and other case studies presented in
[9] in the File Examples CountingFluents case menu.

The user can perform verification of the properties by
selecting them from the Check property menu. Due to the
arithmetic nature of the counting fluent and their potential
infinite state representation, some limits to counting fluents
must be provided, namely the lower (minimum) and upper
(maximum) values that they can take during the system
execution. In case of missing limits declarations, as shown
in Fig.1, a window will ask for them.

These limits can be applied by means of the apply
declaration following the syntax:

〈CFluentDef〉 ‘apply’ (〈limit name〉 | 〈CFluentLimitDef〉)
‘ limit ’ 〈limit name〉 ‘=’ 〈CFluentLimitDef〉
〈CFluentLimitDef〉 ::= (‘[’ | ‘(’) 〈min value〉‘..’〈max value〉 (‘]’ | ‘)’)

where brackets and parentheses are used to indicate the strict
and non-strict limit, respectively. Note that the syntax allows
to define generic limits, with a name, to be applied in one or
more counting fluent definitions.

The distinction between the strict and non-strict limits
yields in the the behaviour that our model checking approach
adopts when a counting fluent has reached its maximum (resp.
minimum) value and some incrementing (resp. decrementing)
event take place. When a strict limit is exceeded, the counting
fluent value remains as is, on the maximum (resp. minimum)
value, and the analysis goes on. On the other hand, when a
non-strict limit is exceeded, a fluent overflowed state has been
reached, so the current trace is discarded by our model check-
ing approach. Then, when the tool produces a counterexample,
such a trace guarantees that no counting fluent exceeds its
corresponding limits. However, if no counterexample has been
found within the limits provided, but a fluent overflowed state
has been reached, then the result is inconclusive, in the sense

that we cannot inferred that the property is valid, due to the
limits may be not sufficient to produce a counterexample. On
the other hand, if no counterexample has been generated and
no fluent overflowed state has been reached, then our approach
can guarantee the validity of the property of interested.

Summarising, the output of a property verification, in pres-
ence of counting fluents, will be one of the following cases:

• Invalid: A counterexample was found (without fluent-
overflowed states).

• Inconclusive: No counterexamples was found within the
limits provided, but a fluent-overflowed state was de-
tected.

• Valid: No counterexample was found and no fluent-
overflowed state was detected.

The Fig.2 shows an example of an invalid property for
which a counterexample was found. The original output of
LTSA was modified in order to report the information corre-
sponding to counting fluents along (counterexample) traces.

Another useful feature of the tool is the animator . It
provides a window which can simulate the system execution
by selecting the enable events on each step (Check Run

system). Usually, the animator is very useful for reproducing
counterexample traces. CLTSA incorporates a fluents report
(see Fig.3) which shows the values of propositional and
counting fluent, as well as the counting expressions, in each
step along the trace being animated.

Fig. 3: Animator window.

III. ARCHITECTURAL OVERVIEW

CTLA is an extension of the LTSA tool [1] that incorporates
counting fluents. Fig.4 shows an overview of the LTSA model
checking process, that we later explain how it was modified
to support counting fluents analysis. Basically, given an FSP
model M and a FLTL formula ϕ, LTSA generates an au-
tomata for the model M, a fluent automata for each fluent
definition, and a Buchi automata characterising the negation
of the formula (i.e., ¬ϕ), and checks the emptiness of the
synchronous product between these automatons. Intuitively,
a fluent automata is an automata that consist of two states,
representing the truth values of the fluent (true and false),

and a set of transitions labelled with the activating and
deactivating events, according the fluent’s definition. LTSA
adds two particular self-transitions to these two states, in order
to distinguish in which of them the fluent value is true or false.

BRIDGE = BRIDGE[0][0], //initially empty
BRIDGE[nr:T][nb:T] = //nr is the red
CAR = (enter->exit->CAR).
NOPASS1 = C[1],
C[i:ID] = ([i].enter -> C[i%N+1]).
NOPASS2 = C[1],
C[i:ID] = ([i].exit -> C[i%N+1]).
||CONVOY = ([ID]:CAR || NOPASS1 ||
NOPASS2).

||CARS = (red:CONVOY || blue:CONVOY).

fluent BLUE[i:ID] = <blue[i].enter,
blue[i].exit>
assert ONEWAYP = []!(exists[i:ID] RED[i]
 && exists[j:ID] BLUE[j])
property ONEWAY = (red[ID].enter ->
RED[1]

System and Property
Specification

Model’s Automata

Property’s Automata

M

| |

fluent1 fluent2

M

¬' ¬'

||

Valid

Counterexample

1

2

3

4SYNCH

Fig. 4: Architectural Overview

1 In order use counting fluents in our specifications, we
update the lexer and parser to support the following construc-
tions, whose syntax was presented in Sec.II:

• limits definitions,
• counting fluents definitions, and
• counting expressions as part of LTL formulas.

2 Following the approach proposed in [1], for each counting
expression present in the formula to verify, our model checking
approach generates a counting automata that captures the truth
value of the corresponding counting expression. As example,
the Fig.5 depicts the automata corresponding to the counting
expression ε of the form κ ≤ x with a counting fluent defined
by κ =< I,D,R > initially l + 1, where [l, u] is the κ’s
strict limit, and l + 1 < x < u− 1.

Il l+1 u-1 uI I I

R R
R

D

D D D

…

R

I

D

… xI I

DD

R R

¬✏✏ ✏ ✏ ✏ ¬✏ ¬✏

Fig. 5: Counting automata for the counting expression ε.

In case of non-strict limits, we add an overflowed state
which is reached trough a incrementing (decrementing) event
from the maximum (minimum) value state of the counting
automata. The overflowed state works as a sink state, in the
sense that once this state is reached, then every event that
take place associated to the counting fluent, will self-transition
to the overflowed state. Note that this state is not a state of
acceptance or denial of the corresponding expression value,
from this state only an overflowed situation can be reported.

3 As mentioned before, in presence of non-strict bounds,
our approach can return an inconclusive result. To address this

situation, we modify the model checking algorithm present
in LTSA. LTSA implements its model checking approach by
distinguishing safety from liveness formula, since the shape
of counterexamples will be different in these cases.
Safety properties Safety properties express that “bad things”
will never happen. A counterexample for this kind of prop-
erties a finite trace. After composing all of the automatons
generated by the model checking approach with the Buchi
automata for the negation of the property, our tool proceeds
to look for a trace that lead us to the ERROR state.

For this process we update the LTSA algorithm by checking
that no overflowed state appear in a counterexample trace. In
this scenario we distinguish between these three possible cases
with the corresponding result:

• If no trace to an ERROR state was found, then the property
will be reported as valid.

• If a trace to an ERROR state was found and no overflowed
state appear in the trace, then the property will be
reported as no valid, and the trace will be returned as
counterexample.

• If each trace that leads to an ERROR state passes through
an overflow state, then the property will be reported as
inconclusive, and larger limits will be required.

Liveness properties This kind of properties express that “good
things” will eventually happen. A counterexample for this kind
of properties will be a infinite trace, named a lasso trace: a
trace conformed by two parts, namely, a prefix and a loop-
part, in winch a set of events are repeated into a cycle, where
some undesired event occurs. For this kind of properties, LSTA
search for strongly connected components(SCC) in which the
property to be analyse does not hold.

In a similar way that for safety properties, we update this
algorithm in order to detect overflowed states in the search
process, with the following results:

• If no SCC was found, then the property will be reported
as valid.

• If a SCC was found and no contains some overflowed
event, then the property will be reported as no valid, and
the trace will be returned as counterexample.

• If every SCC found contains some overflowed event, then
the property will be reported as inconclusive, and larger
limits will be required.

4 To enhance the report for the model checking process, we
update the output of the analysis report taken into account the
inconclusive possible outcome. In addition, in case of no-valid
properties, i.e., when a counterexample is found, we update the
report by stating the value of propositional fluent, counting
fluents, and counting expressions at each step of the trace.

IV. REMARKS AND FUTURE WORKS

In this demo, we presented CLTA, an extension of LTSA
with counting fluent temporal logic support. CLTA allows one
to specify LTL properties on reactive systems that incorporates
counting fluents, providing us an intuitive and nature way to
capture properties related to the number of times that certain

system events occurs. These LTL properties, equipped with
counting fluents, can be analysed by the model checking
approach that CLTSA provides. Due to the potential infinite
size nature of counting fluents, the user is required to introduce
limits for each counting fluent, in order to make the model
finite. Thus, CLTSA has now three possible outcomes: the
property is valid, the property in invalid and a counterexample
was generated, and the result is inconclusive and larger limits
are required.

In order to produce a more user friendly report of the results,
CLTA updates the original LTSA trace report with the counting
expression status present in the formula to be analysed. Also
it incorporates to the Animator the status of fluents, counting
fluents and counting expression values at each step of the
animation.

In [4], an extensive LTS layout capabilities was provided
for LTSA. It offers some different layout algorithms, that
allow us to manually edit the graph, navigate from state to
state and more. Thank to the Cédric Delforge and Charles
Pecheur collaboration, we incorporate to CLTSA these LTS
layout features.

Some features which are under development are: i) Counting
Fluent indexation and Counting Fluent array’s arithmetical
operations such as SUM (summation quantification). ii) Con-
ditional Counting Fluents: the idea is to relate a counting fluent
with some propositional fluent C, so as to the counting fluent
value can be updated only when the propositional fluent C is
true; otherwise, i.e., when C is false, the counting fluent value
remains frozen.

REFERENCES

[1] D. Giannakopoulou and J. Magee, Fluent Model Checking for Event-
based Systems, in Proc. of ESEC/FSE’03, ACM, pp. 257-266, 2003.

[2] M. Dwyer, G. Avrunin and J. Corbett, Patterns in Property Specifications
for Finite-state Verification, in Proc. of ICSE’99, ACM, pp. 411-420,
1999.

[3] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall
1985.

[4] C. Delforge, C. Pecheur http://lvl.info.ucl.ac.be/Tools/LTSADelforge
[5] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-

rent Systems - Specification -, Springer, 1991.
[6] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems -

Safety-, Springer, 1995.
[7] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,

John Wiley & Sons, 1999.
[8] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[9] G. Regis, R. Degiovanni, N. D’Ippolito, N. Aguirre, Specifying Event-

Based Systems with a Counting Fluent Temporal Logic, 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Vol. 1,
2015.

